
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Electrochemistry
Review Article
Towards CRISPR powered electrochemical sensing for
smart diagnostics
Poyye Dsouza Priya Swetha1,a, Jospeh Sonia1,a,
Kannan Sapna1,a and K. Sudhakara Prasad1,2
Abstract
Even though global health has been steadily improved, the
global disease burden associated with communicable and non-
communicable diseases extensively increased healthcare
expenditure. The present COVID-19 pandemic scenario has
again ascertained the importance of clinical diagnostics as a
basis to make life-saving decisions. In this context, there is a
need for developing next-generation integrated smart real-time
responsive biosensors with high selectivity and sensitivity. The
emergence of clustered regularly interspaced short palindromic
repeats (CRISPR)/Cas biosensing systems has shown
remarkable potential for developing next-generation biosensors.
CRISPR/Cas integrated electrochemical biosensors (E-
CRISPR) stands out with excellent properties. In this opinion-
ated review, we illustrate the rapidly evolving applications for E-
CRISPR-integrated detection systems towards biosensing and
the future scope associated with E-CRISPR based diagnostics.
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Introduction
Bacteria and Archea has an adaptive immune defence
system, and the discovery of the same is the greatest
achievement in the field of science since the past
www.sciencedirect.com
decade. Nucleic acid-based immune mechanism helps
in protecting microorganisms from viral infection and is
referred to as CRISPR/Cas system (clustered regularly
interspaced short palindromic repeats/CRISPR-
associated systems) [1]. Since its discovery, CRISPR

has been used extensively as a genome engineering tool
and also for DNA or RNA recognition [2*] with specific
high-sensitivity enzymatic reporter unlocking (SHER-
LOCK) [3]. SHERLOCK is the first CRISPR/Cas-
based sensing approach for pathogen detection and
uses CRISPR/Cas13a system and recombinase poly-
merase amplification strategy for collateral cleavage and
target isothermal amplification [4]. A paper-based
CRISPR test for COVID-19 known as FnCas9 editor
linked uniform detection assay (FELUDA) was recently
developed by the Tata group and CSIR, India. FELUDA

uses Cas9 enzymatic cleavage property to detect
nucleotide sequence [5,6].

Different nucleic acid detection and amplification
methods are practised worldwide [7]. To mention few,
PCR, including traditional, quantitative and digital PCR
[8], different isothermal techniques, such as loop-
mediated isothermal amplification (LAMP), recombi-
nase polymerase amplification, rolling circle amplification,
sequence-based amplification, nicking enzyme amplifi-
cation reaction, exponential amplification reaction, and

strand displacement amplification [9]. Sequencing
methods such as Sanger, next-gen, nanopore sequencing
and blotting techniques such as Southern and Northern
have been practised. Fluorescence in situ hybridization is
one of the non-amplifications cytogenic techniques used
for the detection of genemutations and the identification
of microbial species. However, the fluorescence in situ
hybridization system showed a poor limit of detection and
background issues associated with fluorescent micro-
scopes [10,11]. All the above-mentioned techniques
gained fame in the initial phase because of better detec-

tion ability and advantages, nevertheless increasing
demand for on-site point-of-care (POC) devices and
associated flaws, such as low sensitivity, specificity,
selectivity and relative expenses challenged traditional
methods [12]. On the contrary, the advent of CRISPR
paved new cost-effective opportunities and provides
attomole range limit of detection, high specificity and
sensitivity [2,4]. Emerging needs in monitoring disease
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Table 1

Represents recent advances in E-CRISPR based biosensors for different clinical biomarkers.

CRISPR/
Cas system

Pathogen Detection Technique Detection limit Sample Year Reference

Cas 12a HPV16
PB-19
TGF-b1

SWV 50 pM
0.2 nm

Amplified ssDNA
Spiked sample

2019 [22]

Cas 13a miRNA-19B
miRNA-20A

Amperometry 10 nM Serum sample 2019 [33*]

Cas 9/Cas 12a PB-19 SWV 10 fM Serum sample 2020 [28]
Cas 12a HPV 16, HPV 18 DPV 30 pM Amplified ssDNA

Spiked sample
2020 [30]

dCas 9 Tumour DNAs (ctDNA) Impedence spectroscopy 0.65 nM Blood sample 2020 [34]
Cas13a miRNA-17 Electrochemiluminescence 1 pM Human tumour cells 2020 [35]
Cas 12a HPV 16, HPV 18, HIV SWV 1.2 × 104 Cervical swab sample 2021 [27]
Cas 12a Listeria monocytogenes SWV 0.68 aM Listeria in spiked sample 2021 [36]
Cas 9 Tumour DNA detection DPV 0.13 pM Serum sample 2021 [37]
dCas 9 DNA Impedence spectroscopy 33.96 fM Glioblastoma 2021 [38]
Cas 13a Non-small-cell lung

carcinoma RNAs
SWV 50 aM Serum sample 2021 [39]

Cas 13a miRNAs DPV 2.6 fM Serum sample 2021 [40]
Cas 12a microRNAs

PB-19
Adenosine-50-triphosphate

SWV 0.83 aM
0.52 aM
0.46 pM

Serum sample 2021 [41]

Cas 12a HPV-16 Electrochemiluminescence 0.48 pM Blood sample 2021 [42]

2 Sensors and Biosensors
outbreaks and patient management have prompted the
development of rapid and sensitive POC devices. The
term REASSURED was coined in 2018 by including two
more criteria of real-time connectivity (R), and ease of

specimen collection and environmentally friendly (E) to
the previous WHO’s ASSURED criteria, hence aiding in
scaling up diagnosis even in low- and middle-income
countries [12*]. By digitalizing the POC platform, data
can be linked to proficiency testing by aiding in accessing
patient’s health information thereby reducing interpre-
tation and transcription errors.On onehand,CRISPR-Cas
systems offer perfect gene-editing tools, extreme sensi-
tivity and programming ability makes them an apt tool for
biosensing applications with minimal technical expertise
and instrument clusters. On the other hand, CRISPR/

Cas-based systems allow highly specific, rapid, cost-
effective, multiplex alternatives to detect target nucleic
acids, viruses, bacteria, cancer mutations, and proteins
[13e15], which could satisfy the REASSURED criteria
for diagnostics.

In general, CRISPR/Cas systems are divided into two
different classes. Class 1 systems have multiple effector
complexes for the target, whereas, class 2 requires a
single-effector for the target. CRISPR systems are easily
programmed with CRISPR-RNA’s, recognized and
cleaved either by single-stranded or double-stranded

DNA. CRISPR-Cas system consists of guide RNA
(gRNA) and CRISPR-associated (Cas) nuclease. Cas9
nuclease has guide RNA made of CRISPR RNA capable
of binding to target DNA and a trans-activating RNA
binding to the nuclease to regulate cleavage activity,
Current Opinion in Electrochemistry 2021, 30:100829
whereas, Cas12a and Cas13a systems have only CRISPR
RNA, responsible for both binding and cleavage activity.
CRISPR type II, III, V, VI RNA guided nucleases (Cas 9,
Cas12a, Cas13, Csm6) has been extensively applied for

nucleic acid detection [16e18], (see Table 1).

Simplicity, accuracy, sensitivity, selectivity, low-cost,
minimal equipment, and shorter turn-around time are
highly desirable and synonyms for new age biosensors.
To facilitate CRISPR/Cas multiplex biosensing, inte-
grating CRISPR/Cas with some alternative techniques
need to be considered. Compared with the existing
detection strategies, electrochemical techniques are
cost-effective, easy to fabricate, easy to functionalize
and miniaturize, offers relatively high sensitivity and

selectivity along with rapid responses, therefore exten-
sively applied for biosensing applications [19e22].
Taken together with the advantages of the CRISPR/Cas
system and electrochemical techniques, it is plausible to
achieve significant improvement in biosensing with
biological samples, which are usually marred by the
presence of interferents, results in impeding electron
transfer process and subsequent measurements. In this
current opinion, we have put up our effort to opine on
recent advances in the electrochemical-CRISPRebased
biosensors, hurdles and future perspectives in disease
monitoring and patient management.
CRISPR/Cas integrated electrochemical
sensors
Recently, Cas integrated electrochemical sensors (E-
CRISPR) has been extensively used to address the
www.sciencedirect.com
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solution for the detection of biomarkers because of high
selective affinity-based interactions with varied bio-
logical targets. E-CRISPR is an electrochemistry-inte-
grated system hence comprises of working electrode,
counter electrode and reference electrode [22]. E-
CRISPR-integrated POC’s are the need of the hour
because of versatile advantages and easiness to trans-
late into smart devices, making clinicians analyse data

in a short time and offer better care for patients.
Figure 1 represents the schematics for a simple E-
CRISPR-integrated POC device. In the E-CRISPR
system, Cas starts cleaving reporter strands only when
complementarity is formed, resulting in the formation
of electrochemical outputs. This versatile and simple
approach of CRISPR has been successfully integrated
into developing sensors for wide biologically important
analytes, such as nucleic acid, protein, pathogen
detection, genome engineering, and transcription
regulation [22e31].

For instance, CRISPR-Cas systems have been used for
electrochemical detection of viral nucleic acids of
human papillomavirus 16 (HPV- 16) [22], HIV [27] and
parvovirus B19 (PB-19) [22,28,41]. The non-specific
short ssDNA tagged with methylene blue (MB-
ssDNA) electrochemical tag for signal transduction are
commonly used [22]. Similarly, MB tag was used with
hairpin DNA (hpDNA), to study the cleavage action of
Cas12a for fabricating electrochemical DNA sensors
[30]. In presence of the target, Cas12a trans-cleavage

activity is activated, cleaving MB-ssDNA reporter off
the electrode surface, therefore decreasing MB signal
transducer in the form of low or off electrochemical
signal. On the contrary, a high or on electrochemical
signal is achieved in the absence because of silencing of
trans-cleavage activity. In addition, Figure 2,
Figure 1

Schematic representation of working mechanism for E-CRISPR based POCs p
through the channels to reaction zone (modified with CRISPR-Cas system). T
the target developing an off-signal. On the other hand, in the absence of targe
signals are monitored with electrochemical or electrochemiluminescence read
POC, point-of-care.

www.sciencedirect.com
demonstrate the aptamer-based E-CRIPR cascade for
protein detection. In general, square wave or differential
pulse voltammetry has been applied for the measure-
ment of the electrochemical signal, with picomolar
(pM) to femto molar (fM) sensitivity towards HPV
[22,30] and PB-19 [22,28,41]. Whereas the combination
of LAMP with E-CRISPR readout provides high sensi-
tivity, low cost and better signal transduction render the

POC device favourable for resource-poor settings.
Zamani et al. demonstrated successful monitoring of
1.2 � 104 copies of HPV-18 DNA with the combination
of LAMP and E-CRISPR. Moreover, the potential
applicability of developed platform for clinical di-
agnostics was shown by the detection of HPV-18 DNA
in cervical swabs with 100% sensitivity and 89% speci-
ficity [27**]. Schematic representation of integrated
LAMP product with E-CRISPR technique is depicted
in Figure 3. Combination of CRISPR/Cas with electro-
chemical DNA sensor has been used for fabricating

powerful biosensing actuator system for PB-19, known
to cause erythema infection in pregnant women and
children. Implementation of the target recognition
induced cleavage activity of CRISPR system for DNA
sensor, releases electrochemical tag from sensor surface
after cleavage of the target nucleic acid by Cas enzyme
and results in an apparent change in an electrochemical
signal. Although the developed CRISPR-DNA sensor
strategy is generalizable, amplification-free, sensitive
and retains accuracy based on a signal-off assay, might
limit the dynamic detection range [28]. Hence focus

should be given to signal-on strategy providing potential
for a wide linear range and high sensitivity.

E-CRISPR integrated with microfluidics has been used
for monitoring potential brain tumour maker miRNA-
19b in patient serum samples. The developed
latform. Briefly, processed sample is added onto the sample zone, moves
he CRISPR-Cas system gets activated in presence of target and cleaves
t, CRISPR-Cas system is inactivated resulting in signal-on. The resulting
outs. CRISPR, clustered regularly interspaced short palindromic repeats;
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Figure 2

Aptamer-based E-CRISPR protein biosensor involving, Cas12a-crRNA specific for aptamer. In the presence of target, less aptamer is captured and
transduced by E-CRISPR resulting high electrochemical signal from MB from the ssDNA reporter. Conversely, in the absence, the activation of
tans–cleavage activity by ssDNA target recognition results low electrochemical signal.

4 Sensors and Biosensors
microfluidic chip contains an electrochemical cell,
channels, immobilization area, and is immobilized with
streptavidin, functioned to capture biotin labelled RNA
(6-fluorescein amidate (6FAM)-biotin-ssRNA). Here
Cas13a/crRNa complex was incubated with a sample
containing miRNA target and 6FAM-biotin-ssRNA

label. The reaction mixture included glucose oxidase
(GOx) labelled anti-fluorescein antibodies, biotin-
6Fam-ssRNA, streptavidin, along uncut reporters
bound to antibodies. The assay readout is performed by
introducing glucose and subsequent electrochemical
Figure 3

Integrated LAMP and E-CRISPR platform on gold electrodes for biosensing a
fication using LAMP and subsequent activation of Cas12a that cleaves methy
sensors resulting signal-off for a target DNA and on the contrary signal-on fo

Current Opinion in Electrochemistry 2021, 30:100829
detection of produced H2O2 by the labelled GOx. It
should be noted that the authors were successful in
demonstrating the detection of miRNAs in a small
sample volume without relying on any nucleic acid
amplification steps. Moreover, the developed biosensor
exhibited the ability to detect miRNA-19b up to 10 pM

in buffered solutions and could measure circulating
miRNAs in the clinically acceptable range. The in-
ferences obtained from this work found that the signal-
off system is sensitive enough for clinical sample anal-
ysis [26**].
pplications involving traditional nucleic acid extraction followed by ampli-
lene blue tagged oligonucleotide immobilized on gold electrochemical
r Cas12a inactivated non-target DNA resulting without cleavage.

www.sciencedirect.com
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Analytical performance of E-CRISPR could compromise
with the placement of conventional linear ssDNA re-
porter on the electrode as a sensing interface, due to
large electron tunnelling distance from redox labels
hindering electron transfer and also steric hindrance
effect on the interface causing low cleavage efficiency of
Cas12a towards ssDNA. By using hpDNA in place of
linear DNA, previously mentioned drawbacks can be

circumvented. Zhang et al. [30] developed a
hpDNA linked with methylene blue (MB) tag-based E-
CRISPR biosensor for HPV DNA, where a detection
limit of 30 pM in 60 min was observed.

Low-resource settings exceptionally carry the burden of
an infectious disease due to lack of facilities, trained
personnel, and expensive diagnostic tests; hence,
Newsham and Richards-Kortum [31] stressed the need
for accomplishing a greater number of clinical sample
validation before translating CRISPR based electro-

chemical detection strategies for use in low-resource
settings. Moreover, nucleic acid extraction by using
paper-based sample processing and heating techniques,
such as wireless resistive heaters to perform LAMP
could be explored [31]. Also, long term storage can be
achieved by lyophilizing CRISPR-Cas systems aiding in
stability at ambient conditions [32**].
Conclusion and future perspective
Irrespective of resource-poor or resource-rich settings,
real-time rapid diagnosis plays a major role in identifying
future threats raised by many diseases [43]. CRISPR/Cas
systems are boon and are the ultimate weapons for
developing rapid molecular diagnostics to address the
spread of disease, timely intervention and decision
making. E-CRISPR based methods can be effectively
used for developing sensors because they are most reli-

able, as well as highly sensitive transduction systems with
less susceptibility towards impurities and provides the
most selective, accurate, and reproducible performances
along with easy disposable opportunities [44]. Interest-
ingly, CRISPR technology has provided rapid, on-field,
sensitive, and specific assay for SARS-CoV-2 detection
with simultaneous dual-gene detection of SARS-CoV-2 in
a single lateral flow strip with gold nanoprobes [45*]. The
past two years have brought new insights in the field of
electrochemical biosensors using CRISPR based ap-
proaches. Hence, development of E-CRISPR based

biosensor along with nano enabled-probes and tags could
endow the realization of rapid detection of different
strains of virus at ultralow concentration. nTo reduce off-
target issues, Cas14 can be incorporated into CRISPR
sensing because it selectively detects single nucleotide
mismatches [32]. Disease outbreaks commonly affect
rural areas with low access to the health care systems for
proper diagnosis and treatment; hence, E-healthcare or
digital health has gained attention to endow health solu-
tions. In addition, it is also an alternative approach for
www.sciencedirect.com
solving accessibility to healthcare system and for gener-
ating smart data for disease management. Inclusion of the
internet of things, artificial intelligence and Blockchain
analysis intoPOCsensing platform improvesdata curation
for emerging disease scenarios, dynamics. The incorpora-
tion of computation and statistical learning tools while
designing the E-CRISPR POC device will alleviate the
noise and variation in signals unlike the present simple

analogue to digital transition and also support decision
making for development of futuristic E-CRISPR based
biosensors [46**-49]. However, despite the convenience,
sensitivity, and cost-effectiveness about electrochemical
biosensors, most lack clinical validations. Hence, more
focus should be on validating E-CRISPR sensing plat-
forms to foster rapid disease and patient management.
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